Robust cephalometric landmark identification using support vector machines
نویسندگان
چکیده
A robust and accurate image recognizer for cephalometric landmarking is presented. The recognizer uses Support Vector Machine (SVM) to model discrimination boundaries between different landmarks and also between the background frames. Large Margin Classification with non-linear kernels allows to extract relevant details from the landmarks, approaching human expert levels of recognition. In conjunction with Projected Principal-Edge Distribution (PPED) representation as feature vectors, SVM is able to demonstrate more than 95% accuracy for landmark detection on medical cephalograms within a reasonable location tolerance value.
منابع مشابه
Comparison of observer reliability of three-dimensional cephalometric landmark identification on subject images from Galileos and i-CAT cone beam CT.
OBJECTIVES Recently, there has been increasing interest in the use of cone beam CT (CBCT) for three-dimensional cephalometric analysis and craniofacial reconstruction in orthodontic and orthognathic surgical treatment planning. However, there is a need to redefine the cephalometric landmarks in three dimensional cephalometric analysis and to demonstrate the reproducibility of landmark identific...
متن کاملFace Recognition using Eigenfaces , PCA and Supprot Vector Machines
This paper is based on a combination of the principal component analysis (PCA), eigenface and support vector machines. Using N-fold method and with respect to the value of N, any person’s face images are divided into two sections. As a result, vectors of training features and test features are obtain ed. Classification precision and accuracy was examined with three different types of kernel and...
متن کاملIdentification and Adaptive Position and Speed Control of Permanent Magnet DC Motor with Dead Zone Characteristics Based on Support Vector Machines
In this paper a new type of neural networks known as Least Squares Support Vector Machines which gained a huge fame during the recent years for identification of nonlinear systems has been used to identify DC motor with nonlinear dead zone characteristics. The identified system after linearization in each time span, in an online manner provide the model data for Model Predictive Controller of p...
متن کاملA Comparative Study of Extreme Learning Machines and Support Vector Machines in Prediction of Sediment Transport in Open Channels
The limiting velocity in open channels to prevent long-term sedimentation is predicted in this paper using a powerful soft computing technique known as Extreme Learning Machines (ELM). The ELM is a single Layer Feed-forward Neural Network (SLFNN) with a high level of training speed. The dimensionless parameter of limiting velocity which is known as the densimetric Froude number (Fr) is predicte...
متن کاملSTAGE-DISCHARGE MODELING USING SUPPORT VECTOR MACHINES
Establishment of rating curves are often required by the hydrologists for flow estimates in the streams, rivers etc. Measurement of discharge in a river is a time-consuming, expensive, and difficult process and the conventional approach of regression analysis of stage-discharge relation does not provide encouraging results especially during the floods. P
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003